Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tris\{2-[(2-aminobenzylidene)amino]ethyl\}amine

Mariana Elizondo García, ${ }^{\text {a }}$ Sylvain Bernès, ${ }^{\text {b }}$ Nancy Pérez Rodríguez ${ }^{\mathrm{a}}$ and Perla Elizondo Martínez ${ }^{\text {a }}$

${ }^{\text {a }}$ Laboratorio de Química Industrial, CELAES, Facultad de Ciencias Químicas, UANL, Pedro de Alba s/n, 66451 San Nicolás de los Garza, NL, Mexico, and ${ }^{\text {b }}$ DEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570
Monterrey, NL, Mexico
Correspondence e-mail: sylvain_bernes@hotmail.com

Received 20 October 2010; accepted 27 October 2010
Key indicators: single-crystal X-ray study; $T=300 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.058 ; w R$ factor $=0.176$; data-to-parameter ratio $=13.7$.

The title Schiff base, $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{7}$, is a tripodal amine displaying C_{3} symmetry, with the central tertiary N atom lying on the threefold crystallographic axis. The $\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}$ conformation of the pendant arms is gauche [torsion angle $=$ 76.1 (3) ${ }^{\circ}$], which results in a claw-like molecule, with the terminal aniline groups wrapped around the symmetry axis. The lone pair of the apical N atom is clearly oriented inwards towards the cavity, and should thus be chemically inactive. The amine NH_{2} substituents lie in the plane of the benzene ring to which they are bonded. With such an arrangement, one amine H atom forms an $S(6)$ motif through a weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond with the imine N atom, while the other is engaged in an intermolecular $\mathrm{N}-\mathrm{H} \cdots \pi$ contact involving the benzene ring of a neighbouring molecule related by inversion. The benzene rings also participate in an intramolecular C $H \cdots \pi$ contact of similar strength. In the crystal structure, molecules are separated by empty voids (ca 5% of the crystal volume), although the crystal seems to be unsolvated.

Related literature

For applications of polyamines as metal extractants, see: Wenzel (2008); Bernier et al. (2009); Galbraith et al. (2006). For other applications, see: Zibaseresht \& Hartshorn (2005); Mercs et al. (2008). For similar C_{3} tripodal structures, see: Weibel et al. (2002); Işıklan et al. (2010); McKee et al. (2006); Glidewell et al. (2005). The software used for analysis of the empty voids in the crystal structure was SQUEEZE in PLATON (Spek, 2009).

Experimental

Crystal data
$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{7}$
$M_{r}=455.60$
Trigonal, $R \overline{3}$
$a=13.1075$ (18) \AA
Mo $K \alpha$ radiation
$c=25.985$ (6) A
$\mu=0.07 \mathrm{~mm}^{-1}$
$c=25.985(6) \AA \AA^{3}$
$V=3866.3(12) \AA^{3}$
$0.40 \times 0.40 \times 0.18 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer 6668 measured reflections 1507 independent reflections 838 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
2 standard reflections every 98 reflections intensity decay: 2%

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.176 \quad$ independent and constrained
$S=1.81$
1507 reflections
110 parameters
$\Delta \rho_{\text {max }}=0.51 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).
$C g$ is the centroid of the benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 12-\mathrm{H} 12 A \cdots \mathrm{~N} 4$	$0.92(3)$	$2.02(3)$	$2.700(3)$	$129(2)$
$\mathrm{N} 12-\mathrm{H} 12 B \cdots C g^{\mathrm{i}}$	$0.86(3)$	$2.70(3)$	$3.430(2)$	$143(3)$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots C g^{\mathrm{ii}}$	0.93	2.71	$3.494(3)$	143
Symmetry codes: (i) $x-y+\frac{1}{3}, x-\frac{1}{3},-z+\frac{2}{3} ;($ (ii) $-y+2, x-y+1, z$				

Data collection: XSCANS (Siemens, 1996); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

The authors thank the Facultad de Ciencias Químicas (UANL, Mexico) and PAICyT (project number IT164-09) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2243).

References

Bernier, N., Carvalho, S., Li, F., Delgado, R. \& Félix, V. (2009). J. Org. Chem. 74, 4819-4827.
Galbraith, S. G., Lindoy, L. F., Tasker, P. A. \& Plieger, P. G. (2006). Dalton Trans. pp. 1134-1136.
Glidewell, C., Low, J. N., Skakle, J. M. S. \& Wardell, J. L. (2005). Acta Cryst. C61, o75-o77.

Işıklan, M., Pramanik, A., Fronczek, F. R. \& Hossain, M. A. (2010). Acta Cryst. E66, o2739-o2740.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

McKee, V., Morgan, G. G. \& Nelson, J. (2006). Acta Cryst. E62, o3747-o3749.
Mercs, L., Neels, A. \& Albrecht, M. (2008). Dalton Trans. pp. 5570-5576.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Weibel, N., Charbonnière, L. J. \& Ziessel, R. F. (2002). J. Org. Chem. 67, 78767879.

Wenzel, M. (2008). PhD thesis, TU Dresden, Germany.
Zibaseresht, R. \& Hartshorn, R. M. (2005). Dalton Trans. pp. 3898-3908.

supplementary materials

Acta Cryst. (2010). E66, o3054-o3055 [doi:10.1107/S1600536810043783]

Tris\{2-[(2-aminobenzylidene)amino]ethyl\}amine

M. Elizondo García, S. Bernès, N. Pérez Rodríguez and P. Elizondo Martínez

Comment

Recently, the research line of receptors with the ability to extract metal salts has grown in relevance, because of the harmful effects that anions and cations have in health and the environment. A class of such receptors includes polyamines, in which cations and anions are found in separate sites in a zwitterionic form of the ligand. As a consequence, the efficiency for solvent extraction of metal salts may be modulated trough pH adjustment (Wenzel, 2008). In these compounds, the metal ion coordinates in the deprotonated moiety, while the anion is associated to the protonated pendant groups (Bernier et al., 2009; Galbraith et al., 2006). The Schiff base condensation is a useful route to obtain polyamines including suitable structural characteristics in order to act as polytopic ligands. Some recent reports highlighted important applications of this type of compounds (Zibaseresht \& Hartshorn, 2005; Mercs et al., 2008).

We report herein on the synthesis (Fig. 1) and crystal structure of a new Schiff base, which, we hope, will allow to bond both cations and anions, depending on the pH . The molecule (Fig. 2) is a tripodal tertiary amine $\mathrm{N} R_{3}$ where R contains imine functionality. The tripodal N atom is placed on a 3-fold axis in a trigonal cell (C_{3} point symmetry). The pendant arms R are gauche, as reflected by torsion angle $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4,76.1(3)^{\circ}$, and the lone pair on N1 is directed toward the cavity formed by the arms. Similar arrangements giving claw-like molecules were observed in related tertiary amines, although in less symmetric Laue groups (e.g. Weibel et al., 2002; Işıklan et al., 2010). In some instances, closely related tripodal $\mathrm{N} R_{3}$ molecules approximate the C_{3} symmetry but with R arms lying in a plane rather than forming a closed cavity (McKee et al., 2006). Glidewell et al. (2005) showed that the molecular conformation for this class of amines is determined mainly by direction-specific intra- and intermolecular interactions. In the case of the title amine, NH_{2} groups in the aniline moieties are engaged in both intra and intermolecular interactions: H12A forms a weak hydrogen bond with the imine atom N4, while H12B affords an intermolecular $\mathrm{N}-\mathrm{H} \cdots \pi$ contact, also of limited strength. The last significant contact is intramolecular: the $\mathrm{C} 7-\mathrm{H} 7$ aromatic group gives a $\mathrm{C}-\mathrm{H} \cdots \pi$ contact with the next arm in the molecule.

As mentioned, all non bonding contacts are rather weak. As a consequence, molecules are not densely packed in the crystal, and voids of $c a 60 \AA^{3}$ are available for solvent insertion. However, attempts to include non-diffracting solvent in the structural model using SQUEEZE (Spek, 2009) were unsuccessful. The chemical formula was thus left as unsolvated.

Experimental

To a dissolution of 2-nitrobenzaldehyde $(0.020 \mathrm{~mol})$ in ethanol $(60 \mathrm{ml})$, were added $11.114 \mathrm{~g}(0.20 \mathrm{~mol})$ of iron, $90 \mu \mathrm{l}$ of hydrochloric acid and 15 ml of distilled water. Immediately the mixture was refluxed for 90 min . The mixture was filtered off using Hyfo supercell, and the solvent was distilled, affording a yellow oil (Fig. 1, IL). In order to obtain the title molecule (I), a dissolution of 2.414 g of IL in 20 ml of methanol and $1060 \mu \mathrm{l}$ of tris(2-aminoethyl)amine (TREN) were stirred at room temperature for 30 min , affording a yellow solid, (I), which was filtered off and recrystallized from acetonitrile. Suitable crystals were obtained as pale-yellow blocks by slow evaporation of an acetone solution at 298 K . m.p. 416-417 K; analysis found (calc. for $\mathrm{C}_{2} \mathrm{H}_{33} \mathrm{~N}_{7}$): C 71.02 (71.18%), H 7.82 (7.30%), N 22.40 (21.52\%); IR RTA: 3437, 3237 (NH $v_{\text {as }}$ and v_{s}),

supplementary materials

$1635\left(\mathrm{C}=\mathrm{N} \delta_{\mathrm{s}}\right), 1588\left(\mathrm{NH} \delta_{\mathrm{S}}\right), 749 \mathrm{~cm}^{-1}\left(\mathrm{NH} \delta_{\mathrm{s}}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$, p.p.m.: $2.92\left(6 \mathrm{H}, t, \mathrm{H}_{2} \mathrm{C}-\mathrm{N}\right), 3.69(6 \mathrm{H}$, $\left.t, \mathrm{H}_{2} \mathrm{C}=\mathrm{N}\right), 6.34\left(6 \mathrm{H}, s, \mathrm{H}_{2} \mathrm{NAr}\right), 6.62(6 \mathrm{H}, c, \mathrm{Ar}), 6.88(3 \mathrm{H}, d d, \mathrm{Ar}), 7.12(3 \mathrm{H}, t d, \mathrm{Ar}), 8.17(3 \mathrm{H}, s, \mathrm{Ar})$.

Refinement

Amine H atoms H 12 A and H 12 B were found in a difference map and refined with free coordinates. Other H atoms were placed in idealized positions and refined as riding to their parent C atoms, with bond lengths fixed to 0.97 (methylene) or $0.93 \AA$ (aromatic). Isotropic displacement parameters for H atoms were calculated as $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom). A set of 21 reflections with $F_{\mathrm{o}} \ll F_{\mathrm{c}}$ (probably because of a diffractometer instability) were omitted in least-squares refinement.

Figures

Fig. 1. Synthetic route for the title compound.

2-[(\{2-[bis(2-\{[(2- aminophenyl)methylidene]amino\}ethyl)amino]ethyl\}imino)methyl]aniline

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{7}$
$M_{r}=455.60$
Trigonal, $R \overline{3}$
Hall symbol: -R 3
$a=13.1075$ (18) \AA
$c=25.985(6) \AA$
$V=3866.3(12) \AA^{3}$
$Z=6$
$F(000)=1464$

Data collection

Siemens P4
diffractometer
$D_{\mathrm{x}}=1.174 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 416 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 70 reflections
$\theta=4.8-12.3^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=300 \mathrm{~K}$
Prism, yellow
$0.40 \times 0.40 \times 0.18 \mathrm{~mm}$

$$
R_{\mathrm{int}}=0.033
$$

Radiation source: fine-focus sealed tube graphite
ω scans
6668 measured reflections
1507 independent reflections
838 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.176$
$S=1.81$
1507 reflections
110 parameters
0 restraints

0 constraints

$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-13 \rightarrow 15$
$k=-15 \rightarrow 15$
$l=-30 \rightarrow 30$
2 standard reflections every 98 reflections
intensity decay: 2\%

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.05 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0057 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
N1	1.0000	1.0000	$0.17108(11)$	$0.0773(10)$
C2	$0.9753(3)$	$0.8840(2)$	$0.15415(9)$	$0.0952(9)$
H2A	1.0068	0.8904	0.1198	0.114^{*}
H2B	0.8906	0.8322	0.1524	0.114^{*}
C3	$1.0266(3)$	$0.8305(3)$	$0.18909(10)$	$0.0990(10)$
H3A	1.0287	0.7663	0.1714	0.119^{*}
H3B	1.1069	0.8892	0.1978	0.119^{*}
N4	$0.95737(19)$	$0.78635(19)$	$0.23590(8)$	$0.0821(7)$
C5	$1.0077(2)$	$0.8295(2)$	$0.27831(10)$	$0.0741(7)$
H5A	1.0862	0.8891	0.2776	0.089^{*}
C6	$0.9507(2)$	$0.79175(19)$	$0.32820(9)$	$0.0680(7)$
C7	$1.0149(2)$	$0.8459(2)$	$0.37218(10)$	$0.0825(8)$
H7A	1.0933	0.9045	0.3688	0.099^{*}
C8	$0.9669(3)$	$0.8163(3)$	$0.42032(11)$	$0.0985(9)$
H8A	1.0120	0.8540	0.4492	0.118^{*}
C9	$0.8505(3)$	$0.7297(3)$	$0.42536(10)$	$0.0915(9)$
H9A	0.8165	0.7096	0.4579	0.110^{*}
C10	$0.7853(3)$	$0.6738(2)$	$0.38354(10)$	$0.0820(8)$
H10A	0.7073	0.6147	0.3879	0.098^{*}
C11	$0.8319(2)$	$0.7026(2)$	$0.33419(9)$	$0.0696(7)$

N12	$0.7651(2)$	$0.6450(2)$	$0.29267(9)$	$0.0958(8)$
H12A	$0.792(3)$	$0.670(3)$	$0.2599(10)$	0.115^{*}
H12B	$0.692(3)$	$0.597(3)$	$0.2993(11)$	0.115^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0863(15)$	$0.0863(15)$	$0.0592(18)$	$0.0432(8)$	0.000	0.000
C2	$0.116(2)$	$0.101(2)$	$0.0686(14)$	$0.0545(18)$	$0.0064(14)$	$-0.0093(14)$
C3	$0.118(2)$	$0.098(2)$	$0.0928(18)$	$0.0631(19)$	$0.0324(16)$	$0.0059(15)$
N4	$0.0836(15)$	$0.0817(14)$	$0.0848(14)$	$0.0442(12)$	$0.0142(12)$	$0.0027(11)$
C5	$0.0668(15)$	$0.0620(14)$	$0.0941(17)$	$0.0327(12)$	$0.0095(13)$	$0.0063(13)$
C6	$0.0648(15)$	$0.0560(13)$	$0.0840(16)$	$0.0307(12)$	$0.0009(12)$	$0.0046(11)$
C7	$0.0821(17)$	$0.0684(16)$	$0.0913(18)$	$0.0333(14)$	$-0.0097(14)$	$0.0050(13)$
C8	$0.121(3)$	$0.094(2)$	$0.0859(18)$	$0.058(2)$	$-0.0204(18)$	$-0.0012(16)$
C9	$0.112(2)$	$0.094(2)$	$0.0842(18)$	$0.063(2)$	$0.0122(16)$	$0.0217(16)$
C10	$0.0820(17)$	$0.0778(17)$	$0.0947(18)$	$0.0463(14)$	$0.0110(15)$	$0.0148(14)$
C11	$0.0679(15)$	$0.0647(14)$	$0.0832(15)$	$0.0384(13)$	$0.0025(13)$	$-0.0001(13)$
N12	$0.0638(14)$	$0.1025(18)$	$0.1008(16)$	$0.0263(13)$	$0.0001(13)$	$-0.0157(14)$

Geometric parameters (\AA, ${ }^{\circ}$)

N1-C2	1.455 (3)
N1-C2 ${ }^{\text {i }}$	1.455 (3)
N1-C2 ${ }^{\text {ii }}$	1.455 (3)
C2-C3	1.498 (4)
C2-H2A	0.9700
C2-H2B	0.9700
$\mathrm{C} 3-\mathrm{N} 4$	1.454 (3)
C3-H3A	0.9700
C3-H3B	0.9700
N4-C5	1.264 (3)
C5-C6	1.454 (3)
C5-H5A	0.9300
C6-C7	1.386 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 2{ }^{\text {i }}$	111.28 (14)
C2-N1-C2 $2^{\text {ii }}$	111.28 (14)
$\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 2^{\text {ii }}$	111.28 (14)
N1-C2-C3	112.9 (2)
N1-C2-H2A	109.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0
N1-C2-H2B	109.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0
H2A-C2-H2B	107.8
N4-C3-C2	110.9 (2)
N4-C3-H3A	109.5
C2-C3-H3A	109.5
N4-C3-H3B	109.5

C6-C11	$1.413(3)$
C7-C8	$1.366(4)$
C7-H7A	0.9300
C8-C9	$1.379(4)$
C8-H8A	0.9300
C9-C10	$1.350(4)$
C9-H9A	0.9300
C10-C11	$1.389(3)$
C10-H10A	0.9300
C11-N12	$1.356(3)$
N12-H12A	$0.92(3)$
N12-H12B	$0.86(3)$
C7-C6-C5	$119.0(2)$
C11-C6-C5	$123.1(2)$
C8-C7-C6	$122.3(3)$
C8-C7-H7A	118.8
C6-C7-H7A	118.8
C7-C8-C9	$118.9(3)$
C7-C8-H8A	120.5
C9-C8-H8A	120.5
C10-C9-C8	$120.7(3)$
C10-C9-H9A	119.7
C8-C9-H9A	119.7
C9-C10-C11	$121.5(3)$
C9-C10-H10A	119.2

sup-4

supplementary materials

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.1
$\mathrm{C} 5-\mathrm{N} 4-\mathrm{C} 3$	$118.0(2)$
$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6$	$124.1(2)$
$\mathrm{N} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	117.9
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	117.9
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 11$	$117.9(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$83.1(3)$
$\mathrm{C} 2 \mathrm{ii}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-152.1(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4$	$76.1(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 5$	$-119.7(3)$
$\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6$	$-178.2(2)$
$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-179.8(2)$
$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 11$	$-0.3(4)$
$\mathrm{C} 11-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.3(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$179.1(2)$

$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	119.2
$\mathrm{~N} 12-\mathrm{C} 11-\mathrm{C} 10$	$120.6(2)$
$\mathrm{N} 12-\mathrm{C} 11-\mathrm{C} 6$	$120.7(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 6$	$118.7(2)$
$\mathrm{C} 11-\mathrm{N} 12-\mathrm{H} 12 \mathrm{~A}$	$120.7(19)$
$\mathrm{C} 11-\mathrm{N} 12-\mathrm{H} 12 \mathrm{~B}$	$115(2)$
$\mathrm{H} 12 \mathrm{~A}-\mathrm{N} 12-\mathrm{H} 12 \mathrm{~B}$	$123(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.1(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$0.9(4)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-1.1(4)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 12$	$179.7(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 6$	$0.6(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 11-\mathrm{N} 12$	$-178.9(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 11-\mathrm{N} 12$	$1.6(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 11-\mathrm{C} 10$	$0.1(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 11-\mathrm{C} 10$	$-179.3(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 12-\mathrm{H} 12 \mathrm{~A} \cdots \mathrm{~N} 4$	$0.92(3)$	$2.02(3)$	$2.700(3)$	$129(2)$
$\mathrm{N} 12-\mathrm{H} 12 \mathrm{~B} \cdots \mathrm{Cg}^{\mathrm{iii}}$	$0.86(3)$	$2.70(3)$	$3.430(2)$	$143(3)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{Cg}^{\mathrm{i}}$	0.93	2.71	$3.494(3)$	143

Symmetry codes: (iii) $x-y+1 / 3, x-1 / 3,-z+2 / 3$; (i) $-y+2, x-y+1, z$.

Fig. 1

3

Fig. 2

